Harden, V. A. Rocky mountain noticed fever: Historical past of a twentieth-century illness Vol. 16 (Johns Hopkins College Press, 1990).
Maxey, E. E. M., G T; Leary, J W. (1899) Some observations on the so-called noticed fever of Idaho. Med Sentinel, 7: 433–438.
Dantas-Torres, F. Rocky mountain noticed fever. Lancet Infect. Dis. 7, 724–732. https://doi.org/10.1016/S1473-3099(07)70261-X (2007).
Google Scholar
Wilson, L. B. & Chowning, W. M. Research in pyroplasmosis hominis. (“Noticed fever” or “tick fever” of the rocky mountains.) (with map, charts, and plates I, Ii). J. Infect. Dis. 1, 31–57. https://doi.org/10.1093/infdis/1.1.31 (1904).
Google Scholar
NIAID. Historical past of Rocky mountain labs (RML),
Ricketts, H. T. the examine of “rocky mountain noticed fever” (tick fever?) By the use of animal inoculations. A preliminary communication. J. Am. Med. Assoc. XLVII, 33–36. https://doi.org/10.1001/jama.1906.25210010033001j (1906).
Google Scholar
Knoop, F. C. Reference module in biomedical sciences (Elsevier, 2014).
Shope, R. E. The epidemiology of the origin and perpetuation of a brand new illness. Perspect. Biol. Med. 7, 263–278. https://doi.org/10.1353/pbm.1964.0039 (1964).
Google Scholar
Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The rising range of Rickettsia. Proc. Biol. Sci. 273, 2097–2106. https://doi.org/10.1098/rspb.2006.3541 (2006).
Google Scholar
Walker, D. H., Hudnall, S. D., Szaniawski, W. Ok. & Feng, H.-M. Monoclonal antibody-based immunohistochemical analysis of rickettsialpox: The macrophage is the principal goal. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. 12, 529–533 (1999).
Google Scholar
Harrell, G. T. & Aikawa, J. Ok. Pathogenesis of circulatory failure in rocky mountain noticed fever: Alterations within the blood quantity and the thiocyanate area at numerous phases of the illness. Arch. Intern. Med. 83, 331–347. https://doi.org/10.1001/archinte.1949.00220320085007 (1949).
Google Scholar
Lacz, N. L., Schwartz, R. & Kapila, R. Rocky Mountain noticed fever. J. Eur. Acad. Dermatol. Venereol. 20, 411–417 (2006).
Google Scholar
Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the globe: Rising illnesses difficult outdated ideas. Clin. Microbiol. Rev. 18, 719–756 (2005).
Google Scholar
Li, H. & Walker, D. H. rOmpA is a essential protein for the adhesion of Rickettsia rickettsiito host cells. Microb. Pathog. 24, 289–298 (1998).
Google Scholar
Hillman, R. D. Jr., Baktash, Y. M. & Martinez, J. J. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells relies upon interplay with α2β1 integrin. Cell. Microbiol. 15, 727–741 (2013).
Google Scholar
Martinez, J. J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a element of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–1023 (2005).
Google Scholar
Blanc, G. et al. Molecular evolution of rickettsia floor antigens: Proof of optimistic choice. Mol. Biol. Evol. 22, 2073–2083 (2005).
Google Scholar
Sears, Ok. T. et al. Floor proteome evaluation and characterization of floor cell antigen (SCA) or autotransporter household of Rickettsia typhi. (2012).
Ngwamidiba, M., Blanc, G., Raoult, D. & Fournier, P.-E. Sca 1, a beforehand undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol. 6, 1–11 (2006).
Google Scholar
Pan, L., Zhang, L., Wang, G. & Liu, Q. Fast, easy, and delicate detection of the ompB gene of noticed fever group rickettsiae by loop-mediated isothermal amplification. BMC Infect. Dis. 12, 254. https://doi.org/10.1186/1471-2334-12-254 (2012).
Google Scholar
Peniche-Lara, G., Zavala-Velazquez, J., Dzul-Rosado, Ok., Walker, D. H. & Zavala-Castro, J. Easy methodology to distinguish amongst Rickettsia species. J. Mol. Microbiol. Biotechnol. 23, 203–208. https://doi.org/10.1159/000348298 (2013).
Google Scholar
Blanda, V. et al. New real-time PCRs to distinguish Rickettsia spp. and Rickettsia conorii. Molecules 25(789), 963 (2020).
Barry, J. C. Notable Contributions to Medical Analysis by Public Well being Service Scientists: A Biobibliography to 1940. (U.S. Division of Well being, Schooling, and Welfare, U.S. Public Well being Service, 1960).
Burgdorfer, W. Ecology of tick vectors of American noticed fever. Bull. World Well being Organ 40, 375–381 (1969).
Google Scholar
Parker, R. R., Spencer, R. R. & Francis, E. Tularæmia: XI tularæmia an infection in ticks of the species dermacentor andersoni stiles within the bitterroot valley Mont. Public Well being Rep. 39, 1057–1073. https://doi.org/10.2307/4577151 (1924).
Google Scholar
Emmons, R. W. Ecology of Colorado tick fever. Annu. Rev. Microbiol. 42, 49–64. https://doi.org/10.1146/annurev.mi.42.100188.000405 (1988).
Google Scholar
Davis, G. E., Cox, H. R., Parker, R. & Dyer, R. A filter-passing infectious agent remoted from ticks. Public Well being Rep. 53, 2259–2311 (1938).
Google Scholar
Yunker, C., Keirans, J., Clifford, C. & Easton, E. Dermacentor ticks (Acari: Ixodoidae: Ixodidae) of the brand new world: A scanning electron microscope atlas. Proc. Entomol. Soc. Wash. 88, 609–627 (1986).
Anderson, J. F. & Laboratory, U. S. D. o. t. T. U. S. M.-H. S. H. Noticed fever (tick fever) of the rocky mountains: A brand new illness. (US Authorities Printing Workplace, 1903).
Bishopp, F. & Trembley, H. L. Distribution and hosts of sure North American ticks. J. Parasitol. 31, 1–54 (1945).
Google Scholar
James, A. M. et al. Distribution, seasonality, and hosts of the Rocky Mountain wooden tick in america. J. Med. Entomol. 43, 17–24 (2006).
Google Scholar
Spencer, R. R. & Parker, R. R. Rocky mountain noticed fever: Vaccination of monkeys and man. Public Well being Rep. 1896–1970(40), 2159–2167. https://doi.org/10.2307/4577679 (1925).
Google Scholar
Cox, H. R. Rocky mountain noticed fever: Protecting worth for guinea pigs of vaccine ready from Rickettsiae cultivated in embryonic chick tissues. Public Well being Rep. 1896–1970(54), 1070–1077. https://doi.org/10.2307/4582917 (1939).
Google Scholar
Lackman, D. & Parker, R. R. Comparability of the immunogenic and anaphylactogenic properties of rocky mountain noticed fever vaccines ready from contaminated yolk sacs and from contaminated tick tissue. Am. J. Public Well being Nations Well being 38, 1402–1404. https://doi.org/10.2105/ajph.38.10.1402 (1948).
Google Scholar
Parker, R. R. Rocky mountain noticed fever: Outcomes of ten years’ prophylactic vaccinationi. J. Infect. Dis. 57, 78–93. https://doi.org/10.1093/infdis/57.1.78 (1935).
Google Scholar
DuPont, H. L. et al. Rocky Mountain noticed fever: A comparative examine of the lively immunity induced by inactivated and viable pathogenic Rickettsia rickettsii. J. Infect. Dis. 128, 340–344. https://doi.org/10.1093/infdis/128.3.340 (1973).
Google Scholar
Kenyon, R. H., Acree, W. M., Wright, G. G. & Melchior, F. W. Jr. Preparation of vaccines for rocky mountain noticed fever from rickettsiae propagated in cell tradition. J. Infect. Dis. 125, 146–152. https://doi.org/10.1093/infdis/125.2.146 (1972).
Google Scholar
Kenyon, R. H. & Pedersen, C. E. Jr. Preparation of Rocky Mountain noticed fever vaccine appropriate for human immunization. J. Clin. Microbiol. 1, 500–503. https://doi.org/10.1128/jcm.1.6.500-503.1975 (1975).
Google Scholar
Osterloh, A. The uncared for problem: Vaccination towards Rickettsiae. PLoS Negl. Trop. Dis. 14, e0008704. https://doi.org/10.1371/journal.pntd.0008704 (2020).
Google Scholar
Sumner, J. W., Sims, Ok. G., Jones, D. C. & Anderson, B. E. Safety of guinea-pigs from experimental Rocky mountain noticed fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 13, 29–35. https://doi.org/10.1016/0264-410x(95)80007-z (1995).
Google Scholar
Gong, W. et al. Enhanced safety towards Rickettsia rickettsii an infection in C3H/HeN mice by immunization with a mixture of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 33, 985–992. https://doi.org/10.1016/j.vaccine.2015.01.017 (2015).
Google Scholar
Wang, P. et al. Th1 epitope peptides induce protecting immunity towards Rickettsia rickettsii an infection in C3H/HeN mice. Vaccine 35, 7204–7212. https://doi.org/10.1016/j.vaccine.2017.09.068 (2017).
Google Scholar
CDC. Rocky mountain noticed fever (RMSF),
Alhassan, A. et al. Rickettsia Rickettsii whole-cell antigens provide safety towards Rocky mountain noticed fever within the canine host. Infect. Immun. https://doi.org/10.1128/IAI.00628-18 (2019).
Google Scholar
Derrick, E. “ Q” fever, a brand new fever entity: Scientific options, analysis and laboratory investigation. Med J Aust 2, 281–299 (1937).
Google Scholar
Burnet, F. M. & Freeman, M. Experimental research on the virus of” Q” fever. Med. J. Aust. 2, 299–305 (1937).
Google Scholar
Shaw, E. I. & Voth, D. E. Coxiella burnetii: A Pathogenic Intracellular Acidophile. Microbiology 165, 1–3. https://doi.org/10.1099/mic.0.000707 (2019).
Google Scholar
Seshadri, R. et al. Full genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. U. S. A. 100, 5455–5460. https://doi.org/10.1073/pnas.0931379100 (2003).
Google Scholar
Raoult, D., Marrie, T. & Mege, J. Pure historical past and pathophysiology of Q fever. Lancet Infect. Dis. 5, 219–226. https://doi.org/10.1016/S1473-3099(05)70052-9 (2005).
Google Scholar
Eldin, C. et al. From Q fever to Coxiella burnetii an infection: A paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).
Google Scholar
Ormsbee, R., Peacock, M., Gerloff, R., Tallent, G. & Wike, D. Limits of rickettsial infectivity. Infect. Immun. 19, 239–245. https://doi.org/10.1128/iai.19.1.239-245.1978 (1978).
Google Scholar
Scott, G. H., Williams, J. C. & Stephenson, E. H. Animal fashions in Q fever: Pathological responses of inbred mice to part I Coxiella burnetii. J. Gen. Microbiol. 133, 691–700. https://doi.org/10.1099/00221287-133-3-691 (1987).
Google Scholar
Madariaga, M. G., Rezai, Ok., Trenholme, G. M. & Weinstein, R. A. Q fever: A organic weapon in your yard. Lancet Infect. Dis. 3, 709–721. https://doi.org/10.1016/s1473-3099(03)00804-1 (2003).
Google Scholar
Cox, H. R. Rickettsia diaporica and American Q fever. Am. J. Trop. Med. Hyg. 20, 463–469 (1940).
Google Scholar
Smadel, J. E., Snyder, M. J. & Robbins, F. C. Vaccination towards Q fever12. Am. J. Epidemiol. 47, 71–81. https://doi.org/10.1093/oxfordjournals.aje.a119187 (1948).
Google Scholar
Benenson, A. S. & Tigertt, W. D. Research on Q fever in man. Trans. Assoc. Am. Phys. 69, 98–104 (1956).
Google Scholar
Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).
Google Scholar
Murray, G. G., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia utilizing totally different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279. https://doi.org/10.1093/sysbio/syv084 (2016).
Google Scholar
Paris, D. H. et al. Actual-time multiplex PCR assay for detection and differentiation of rickettsiae and orientiae. Trans. R. Soc. Trop. Med. Hyg. 102, 186–193. https://doi.org/10.1016/j.trstmh.2007.11.001 (2008).
Google Scholar
Wooden, D. E., Lu, J. & Langmead, B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).
Google Scholar
Clayton, Ok. A., Gall, C. A., Mason, Ok. L., Scoles, G. A. & Brayton, Ok. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wooden tick Dermacentor andersoni. Parasit. Vectors 8, 632. https://doi.org/10.1186/s13071-015-1245-z (2015).
Google Scholar
Bohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D. & Sekeyova, Z. Arsenophonus nasoniae and Rickettsiae An infection of Ixodes ricinus because of parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950. https://doi.org/10.1371/journal.pone.0149950 (2016).
Google Scholar
Trowbridge, R. E., Dittmar, Ok. & Whiting, M. F. Identification and phylogenetic evaluation of Arsenophonus- and Photorhabdus-type micro organism from grownup Hippoboscidae and Streblidae (Hippoboscoidea). J. Invertebr. Pathol. 91, 64–68. https://doi.org/10.1016/j.jip.2005.08.009 (2006).
Google Scholar
Burgdorfer, W. et al. Rhipicephalus sanguineus: Vector of a brand new noticed fever group rickettsia in america. Infect. Immun. 12, 205–210. https://doi.org/10.1128/iai.12.1.205-210.1975 (1975).
Google Scholar
Parola, P. et al. Replace on tick-borne rickettsioses around the globe: A geographic method. Clin. Microbiol. Rev. 26, 657–702. https://doi.org/10.1128/cmr.00032-13 (2013).
Google Scholar
Pascucci, I. et al. One well being method to rickettsiosis: A five-year examine on noticed fever group rickettsiae in ticks collected from people animals and setting. Microorganisms https://doi.org/10.3390/microorganisms10010035 (2021).
Google Scholar
Wikswo, M. E. et al. Detection and identification of noticed fever group rickettsiae in Dermacentor species from southern California. J. Med. Entomol. 45, 509–516. https://doi.org/10.1603/0022-2585(2008)45[509:daiosf]2.0.co;2 (2008).
Google Scholar
Paddock, C. D. Rickettsia parkeri as a paradigm for a number of causes of tick-borne noticed fever within the western hemisphere. Ann. N. Y. Acad. Sci. 1063, 315–326. https://doi.org/10.1196/annals.1355.051 (2005).
Google Scholar
Parola, P., Davoust, B. & Raoult, D. Tick- and flea-borne rickettsial rising zoonoses. Vet. Res. 36, 469–492. https://doi.org/10.1051/vetres:2005004 (2005).
Google Scholar
Carmichael, J. R. & Fuerst, P. A. A rickettsial blended an infection in a Dermacentor variabilis tick from Ohio. Ann. N. Y. Acad. Sci. 1078, 334–337. https://doi.org/10.1196/annals.1374.064 (2006).
Google Scholar
Padgett, Ok. A. et al. The eco-epidemiology of Pacific coast tick fever in California. PLoS Negl. Trop. Dis. 10, e0005020 (2016).
Google Scholar
Gherna, R. L. et al. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait within the parasitic Wasp Nasonia vitripennis. Int. J. Syst. Evol. Microbiol. 41, 563–565. https://doi.org/10.1099/00207713-41-4-563 (1991).
Google Scholar
Balas, M. T., Lee, M. H. & Werren, J. H. Distribution and health results of the son-killer bacterium inNasonia. Evol. Ecol. 10, 593–607 (2005).
Google Scholar
Nováková, E., Hypsa, V. & Moran, N. A. Arsenophonus, an rising clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143. https://doi.org/10.1186/1471-2180-9-143 (2009).
Google Scholar
Grindle, N., Tyner, J. J., Clay, Ok. & Fuqua, C. Identification of Arsenophonus-type micro organism from the canine tick Dermacentor variabilis. J Invertebr. Pathol. 83, 264–266 (2003).
Google Scholar
Dergousoff, S. & Chilton, N. Detection of a brand new arsenophonus-type bacterium in Canadian populations of the rocky mountain wooden tick Dermacentor Andersoni. Exp. Appl. Acarol. 52, 85–91. https://doi.org/10.1007/s10493-010-9340-5 (2010).
Google Scholar
Schrick, L. et al. An early American smallpox vaccine based mostly on horsepox. N. Engl. J. Med. 377, 1491–1492. https://doi.org/10.1056/NEJMc1707600 (2017).
Google Scholar
Brinkmann, A., Souza, A. R. V., Esparza, J., Nitsche, A. & Damaso, C. R. Re-assembly of nineteenth-century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses within the USA. Genome Biol. 21, 286. https://doi.org/10.1186/s13059-020-02202-0 (2020).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).
Google Scholar
Koboldt, D. C. et al. VarScan 2: Somatic mutation and duplicate quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576. https://doi.org/10.1101/gr.129684.111 (2012).
Google Scholar