Genetic sequencing of a 1944 Rocky Mountain noticed fever vaccine

  • Harden, V. A. Rocky mountain noticed fever: Historical past of a twentieth-century illness Vol. 16 (Johns Hopkins College Press, 1990).

    Google Scholar 

  • Maxey, E. E. M., G T; Leary, J W. (1899) Some observations on the so-called noticed fever of Idaho. Med Sentinel, 7: 433–438.

  • Dantas-Torres, F. Rocky mountain noticed fever. Lancet Infect. Dis. 7, 724–732. https://doi.org/10.1016/S1473-3099(07)70261-X (2007).

    Article 
    PubMed 

    Google Scholar 

  • Wilson, L. B. & Chowning, W. M. Research in pyroplasmosis hominis. (“Noticed fever” or “tick fever” of the rocky mountains.) (with map, charts, and plates I, Ii). J. Infect. Dis. 1, 31–57. https://doi.org/10.1093/infdis/1.1.31 (1904).

    Article 

    Google Scholar 

  • NIAID. Historical past of Rocky mountain labs (RML), (2022).

  • Ricketts, H. T. the examine of “rocky mountain noticed fever” (tick fever?) By the use of animal inoculations. A preliminary communication. J. Am. Med. Assoc. XLVII, 33–36. https://doi.org/10.1001/jama.1906.25210010033001j (1906).

    Article 

    Google Scholar 

  • Knoop, F. C. Reference module in biomedical sciences (Elsevier, 2014).

    Google Scholar 

  • Shope, R. E. The epidemiology of the origin and perpetuation of a brand new illness. Perspect. Biol. Med. 7, 263–278. https://doi.org/10.1353/pbm.1964.0039 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The rising range of Rickettsia. Proc. Biol. Sci. 273, 2097–2106. https://doi.org/10.1098/rspb.2006.3541 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, D. H., Hudnall, S. D., Szaniawski, W. Ok. & Feng, H.-M. Monoclonal antibody-based immunohistochemical analysis of rickettsialpox: The macrophage is the principal goal. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. 12, 529–533 (1999).

    CAS 

    Google Scholar 

  • Harrell, G. T. & Aikawa, J. Ok. Pathogenesis of circulatory failure in rocky mountain noticed fever: Alterations within the blood quantity and the thiocyanate area at numerous phases of the illness. Arch. Intern. Med. 83, 331–347. https://doi.org/10.1001/archinte.1949.00220320085007 (1949).

    Article 
    CAS 

    Google Scholar 

  • Lacz, N. L., Schwartz, R. & Kapila, R. Rocky Mountain noticed fever. J. Eur. Acad. Dermatol. Venereol. 20, 411–417 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the globe: Rising illnesses difficult outdated ideas. Clin. Microbiol. Rev. 18, 719–756 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. & Walker, D. H. rOmpA is a essential protein for the adhesion of Rickettsia rickettsiito host cells. Microb. Pathog. 24, 289–298 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hillman, R. D. Jr., Baktash, Y. M. & Martinez, J. J. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells relies upon interplay with α2β1 integrin. Cell. Microbiol. 15, 727–741 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martinez, J. J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a element of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–1023 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blanc, G. et al. Molecular evolution of rickettsia floor antigens: Proof of optimistic choice. Mol. Biol. Evol. 22, 2073–2083 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sears, Ok. T. et al. Floor proteome evaluation and characterization of floor cell antigen (SCA) or autotransporter household of Rickettsia typhi. (2012).

  • Ngwamidiba, M., Blanc, G., Raoult, D. & Fournier, P.-E. Sca 1, a beforehand undescribed paralog from autotransporter protein-encoding genes in Rickettsia species. BMC Microbiol. 6, 1–11 (2006).

    Article 

    Google Scholar 

  • Pan, L., Zhang, L., Wang, G. & Liu, Q. Fast, easy, and delicate detection of the ompB gene of noticed fever group rickettsiae by loop-mediated isothermal amplification. BMC Infect. Dis. 12, 254. https://doi.org/10.1186/1471-2334-12-254 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peniche-Lara, G., Zavala-Velazquez, J., Dzul-Rosado, Ok., Walker, D. H. & Zavala-Castro, J. Easy methodology to distinguish amongst Rickettsia species. J. Mol. Microbiol. Biotechnol. 23, 203–208. https://doi.org/10.1159/000348298 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blanda, V. et al. New real-time PCRs to distinguish Rickettsia spp. and Rickettsia conorii. Molecules 25(789), 963 (2020).

    Google Scholar 

  • Barry, J. C. Notable Contributions to Medical Analysis by Public Well being Service Scientists: A Biobibliography to 1940. (U.S. Division of Well being, Schooling, and Welfare, U.S. Public Well being Service, 1960).

  • Burgdorfer, W. Ecology of tick vectors of American noticed fever. Bull. World Well being Organ 40, 375–381 (1969).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, R. R., Spencer, R. R. & Francis, E. Tularæmia: XI tularæmia an infection in ticks of the species dermacentor andersoni stiles within the bitterroot valley Mont. Public Well being Rep. 39, 1057–1073. https://doi.org/10.2307/4577151 (1924).

    Article 

    Google Scholar 

  • Emmons, R. W. Ecology of Colorado tick fever. Annu. Rev. Microbiol. 42, 49–64. https://doi.org/10.1146/annurev.mi.42.100188.000405 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, G. E., Cox, H. R., Parker, R. & Dyer, R. A filter-passing infectious agent remoted from ticks. Public Well being Rep. 53, 2259–2311 (1938).

    Article 

    Google Scholar 

  • Yunker, C., Keirans, J., Clifford, C. & Easton, E. Dermacentor ticks (Acari: Ixodoidae: Ixodidae) of the brand new world: A scanning electron microscope atlas. Proc. Entomol. Soc. Wash. 88, 609–627 (1986).

    Google Scholar 

  • Anderson, J. F. & Laboratory, U. S. D. o. t. T. U. S. M.-H. S. H. Noticed fever (tick fever) of the rocky mountains: A brand new illness. (US Authorities Printing Workplace, 1903).

  • Bishopp, F. & Trembley, H. L. Distribution and hosts of sure North American ticks. J. Parasitol. 31, 1–54 (1945).

    Article 

    Google Scholar 

  • James, A. M. et al. Distribution, seasonality, and hosts of the Rocky Mountain wooden tick in america. J. Med. Entomol. 43, 17–24 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Spencer, R. R. & Parker, R. R. Rocky mountain noticed fever: Vaccination of monkeys and man. Public Well being Rep. 1896–1970(40), 2159–2167. https://doi.org/10.2307/4577679 (1925).

    Article 

    Google Scholar 

  • Cox, H. R. Rocky mountain noticed fever: Protecting worth for guinea pigs of vaccine ready from Rickettsiae cultivated in embryonic chick tissues. Public Well being Rep. 1896–1970(54), 1070–1077. https://doi.org/10.2307/4582917 (1939).

    Article 

    Google Scholar 

  • Lackman, D. & Parker, R. R. Comparability of the immunogenic and anaphylactogenic properties of rocky mountain noticed fever vaccines ready from contaminated yolk sacs and from contaminated tick tissue. Am. J. Public Well being Nations Well being 38, 1402–1404. https://doi.org/10.2105/ajph.38.10.1402 (1948).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, R. R. Rocky mountain noticed fever: Outcomes of ten years’ prophylactic vaccinationi. J. Infect. Dis. 57, 78–93. https://doi.org/10.1093/infdis/57.1.78 (1935).

    Article 

    Google Scholar 

  • DuPont, H. L. et al. Rocky Mountain noticed fever: A comparative examine of the lively immunity induced by inactivated and viable pathogenic Rickettsia rickettsii. J. Infect. Dis. 128, 340–344. https://doi.org/10.1093/infdis/128.3.340 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kenyon, R. H., Acree, W. M., Wright, G. G. & Melchior, F. W. Jr. Preparation of vaccines for rocky mountain noticed fever from rickettsiae propagated in cell tradition. J. Infect. Dis. 125, 146–152. https://doi.org/10.1093/infdis/125.2.146 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kenyon, R. H. & Pedersen, C. E. Jr. Preparation of Rocky Mountain noticed fever vaccine appropriate for human immunization. J. Clin. Microbiol. 1, 500–503. https://doi.org/10.1128/jcm.1.6.500-503.1975 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osterloh, A. The uncared for problem: Vaccination towards Rickettsiae. PLoS Negl. Trop. Dis. 14, e0008704. https://doi.org/10.1371/journal.pntd.0008704 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sumner, J. W., Sims, Ok. G., Jones, D. C. & Anderson, B. E. Safety of guinea-pigs from experimental Rocky mountain noticed fever by immunization with baculovirus-expressed Rickettsia rickettsii rOmpA protein. Vaccine 13, 29–35. https://doi.org/10.1016/0264-410x(95)80007-z (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gong, W. et al. Enhanced safety towards Rickettsia rickettsii an infection in C3H/HeN mice by immunization with a mixture of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 33, 985–992. https://doi.org/10.1016/j.vaccine.2015.01.017 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, P. et al. Th1 epitope peptides induce protecting immunity towards Rickettsia rickettsii an infection in C3H/HeN mice. Vaccine 35, 7204–7212. https://doi.org/10.1016/j.vaccine.2017.09.068 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • CDC. Rocky mountain noticed fever (RMSF), (2022).

  • Alhassan, A. et al. Rickettsia Rickettsii whole-cell antigens provide safety towards Rocky mountain noticed fever within the canine host. Infect. Immun. https://doi.org/10.1128/IAI.00628-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derrick, E. “ Q” fever, a brand new fever entity: Scientific options, analysis and laboratory investigation. Med J Aust 2, 281–299 (1937).

    Article 

    Google Scholar 

  • Burnet, F. M. & Freeman, M. Experimental research on the virus of” Q” fever. Med. J. Aust. 2, 299–305 (1937).

    Article 

    Google Scholar 

  • Shaw, E. I. & Voth, D. E. Coxiella burnetii: A Pathogenic Intracellular Acidophile. Microbiology 165, 1–3. https://doi.org/10.1099/mic.0.000707 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seshadri, R. et al. Full genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. U. S. A. 100, 5455–5460. https://doi.org/10.1073/pnas.0931379100 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raoult, D., Marrie, T. & Mege, J. Pure historical past and pathophysiology of Q fever. Lancet Infect. Dis. 5, 219–226. https://doi.org/10.1016/S1473-3099(05)70052-9 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eldin, C. et al. From Q fever to Coxiella burnetii an infection: A paradigm change. Clin. Microbiol. Rev. 30, 115–190 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ormsbee, R., Peacock, M., Gerloff, R., Tallent, G. & Wike, D. Limits of rickettsial infectivity. Infect. Immun. 19, 239–245. https://doi.org/10.1128/iai.19.1.239-245.1978 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, G. H., Williams, J. C. & Stephenson, E. H. Animal fashions in Q fever: Pathological responses of inbred mice to part I Coxiella burnetii. J. Gen. Microbiol. 133, 691–700. https://doi.org/10.1099/00221287-133-3-691 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Madariaga, M. G., Rezai, Ok., Trenholme, G. M. & Weinstein, R. A. Q fever: A organic weapon in your yard. Lancet Infect. Dis. 3, 709–721. https://doi.org/10.1016/s1473-3099(03)00804-1 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Cox, H. R. Rickettsia diaporica and American Q fever. Am. J. Trop. Med. Hyg. 20, 463–469 (1940).

    Article 

    Google Scholar 

  • Smadel, J. E., Snyder, M. J. & Robbins, F. C. Vaccination towards Q fever12. Am. J. Epidemiol. 47, 71–81. https://doi.org/10.1093/oxfordjournals.aje.a119187 (1948).

    Article 
    CAS 

    Google Scholar 

  • Benenson, A. S. & Tigertt, W. D. Research on Q fever in man. Trans. Assoc. Am. Phys. 69, 98–104 (1956).

    CAS 
    PubMed 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, G. G., Weinert, L. A., Rhule, E. L. & Welch, J. J. The phylogeny of rickettsia utilizing totally different evolutionary signatures: How tree-like is bacterial evolution?. Syst. Biol. 65, 265–279. https://doi.org/10.1093/sysbio/syv084 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Paris, D. H. et al. Actual-time multiplex PCR assay for detection and differentiation of rickettsiae and orientiae. Trans. R. Soc. Trop. Med. Hyg. 102, 186–193. https://doi.org/10.1016/j.trstmh.2007.11.001 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wooden, D. E., Lu, J. & Langmead, B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clayton, Ok. A., Gall, C. A., Mason, Ok. L., Scoles, G. A. & Brayton, Ok. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wooden tick Dermacentor andersoni. Parasit. Vectors 8, 632. https://doi.org/10.1186/s13071-015-1245-z (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohacsova, M., Mediannikov, O., Kazimirova, M., Raoult, D. & Sekeyova, Z. Arsenophonus nasoniae and Rickettsiae An infection of Ixodes ricinus because of parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950. https://doi.org/10.1371/journal.pone.0149950 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trowbridge, R. E., Dittmar, Ok. & Whiting, M. F. Identification and phylogenetic evaluation of Arsenophonus- and Photorhabdus-type micro organism from grownup Hippoboscidae and Streblidae (Hippoboscoidea). J. Invertebr. Pathol. 91, 64–68. https://doi.org/10.1016/j.jip.2005.08.009 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Burgdorfer, W. et al. Rhipicephalus sanguineus: Vector of a brand new noticed fever group rickettsia in america. Infect. Immun. 12, 205–210. https://doi.org/10.1128/iai.12.1.205-210.1975 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parola, P. et al. Replace on tick-borne rickettsioses around the globe: A geographic method. Clin. Microbiol. Rev. 26, 657–702. https://doi.org/10.1128/cmr.00032-13 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pascucci, I. et al. One well being method to rickettsiosis: A five-year examine on noticed fever group rickettsiae in ticks collected from people animals and setting. Microorganisms https://doi.org/10.3390/microorganisms10010035 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wikswo, M. E. et al. Detection and identification of noticed fever group rickettsiae in Dermacentor species from southern California. J. Med. Entomol. 45, 509–516. https://doi.org/10.1603/0022-2585(2008)45[509:daiosf]2.0.co;2 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paddock, C. D. Rickettsia parkeri as a paradigm for a number of causes of tick-borne noticed fever within the western hemisphere. Ann. N. Y. Acad. Sci. 1063, 315–326. https://doi.org/10.1196/annals.1355.051 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Parola, P., Davoust, B. & Raoult, D. Tick- and flea-borne rickettsial rising zoonoses. Vet. Res. 36, 469–492. https://doi.org/10.1051/vetres:2005004 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Carmichael, J. R. & Fuerst, P. A. A rickettsial blended an infection in a Dermacentor variabilis tick from Ohio. Ann. N. Y. Acad. Sci. 1078, 334–337. https://doi.org/10.1196/annals.1374.064 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Padgett, Ok. A. et al. The eco-epidemiology of Pacific coast tick fever in California. PLoS Negl. Trop. Dis. 10, e0005020 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gherna, R. L. et al. Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait within the parasitic Wasp Nasonia vitripennis. Int. J. Syst. Evol. Microbiol. 41, 563–565. https://doi.org/10.1099/00207713-41-4-563 (1991).

    Article 

    Google Scholar 

  • Balas, M. T., Lee, M. H. & Werren, J. H. Distribution and health results of the son-killer bacterium inNasonia. Evol. Ecol. 10, 593–607 (2005).

    Article 

    Google Scholar 

  • Nováková, E., Hypsa, V. & Moran, N. A. Arsenophonus, an rising clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 9, 143. https://doi.org/10.1186/1471-2180-9-143 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grindle, N., Tyner, J. J., Clay, Ok. & Fuqua, C. Identification of Arsenophonus-type micro organism from the canine tick Dermacentor variabilis. J Invertebr. Pathol. 83, 264–266 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Dergousoff, S. & Chilton, N. Detection of a brand new arsenophonus-type bacterium in Canadian populations of the rocky mountain wooden tick Dermacentor Andersoni. Exp. Appl. Acarol. 52, 85–91. https://doi.org/10.1007/s10493-010-9340-5 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schrick, L. et al. An early American smallpox vaccine based mostly on horsepox. N. Engl. J. Med. 377, 1491–1492. https://doi.org/10.1056/NEJMc1707600 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Brinkmann, A., Souza, A. R. V., Esparza, J., Nitsche, A. & Damaso, C. R. Re-assembly of nineteenth-century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses within the USA. Genome Biol. 21, 286. https://doi.org/10.1186/s13059-020-02202-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koboldt, D. C. et al. VarScan 2: Somatic mutation and duplicate quantity alteration discovery in most cancers by exome sequencing. Genome Res. 22, 568–576. https://doi.org/10.1101/gr.129684.111 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Comment