Human footprint is related to shifts within the assemblages of main vector-borne ailments

  • Ellis, E. C. et al. Folks have formed most of terrestrial nature for at the very least 12,000 years. Proc. Natl. Acad. Sci. USA 118, e2023483118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Williams, B. A. et al. Change in terrestrial human footprint drives continued lack of intact ecosystems. One Earth 3, 371–382 (2020).

    Article 

    Google Scholar 

  • Kuipers, Ok. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal variety internationally’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).

    Article 

    Google Scholar 

  • Venter, O. et al. Sixteen years of change within the world terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 

    Google Scholar 

  • Watson, J. E. M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180 (2019).

    Article 

    Google Scholar 

  • Foley, J. A. et al. International penalties of land use. Science 309, 570–574 (2005).

    Article 
    CAS 

    Google Scholar 

  • Glidden, C. Ok. et al. Human-mediated impacts on biodiversity and the implications for zoonotic illness spillover. Curr. Biol. 31, R1342–R1361 (2021).

    Article 
    CAS 

    Google Scholar 

  • Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).

    Article 

    Google Scholar 

  • Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public well being, social and financial drawback within the twenty first century. Tendencies Microbiol. 10, 100–103 (2002).

    Article 
    CAS 

    Google Scholar 

  • Hotez, P. J. Uncared for tropical ailments within the Anthropocene: the instances of Zika, Ebola, and different infections. PLoS Negl. Trop. Dis. 10, e0004648 (2016).

    Article 

    Google Scholar 

  • Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of latest and re-emerging arboviral ailments. BMJ Glob. Well being 3, e000530 (2018).

    Article 

    Google Scholar 

  • Rosenberg, R. et al. Important indicators: traits in reported vectorborne illness instances – United States and territories, 2004-2016. Morb. Mortal. Wk. Rep. 67, 496–501 (2018).

    Article 

    Google Scholar 

  • World Malaria Report 2020: 20 Years of International Progress and Challenges (WHO, 2020); https://apps.who.int/iris/deal with/10665/337660

  • Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, individuals, illness vectors, and their animal hosts. Int. J. Well being Geogr. 9, 54 (2010).

    Article 

    Google Scholar 

  • Shocket, M. S. et al. Transmission of West Nile and 5 different temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and management of rising vector-borne zoonotic ailments. Lancet 380, 1946–1955 (2012).

    Article 

    Google Scholar 

  • Franklinos, L. H. V., Jones, Ok. E., Redding, D. W. & Abubakar, I. The impact of world change on mosquito-borne illness. Lancet Infect. Dis. 19, e302–e312 (2019).

    Article 

    Google Scholar 

  • Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning method to human footprint index estimation with purposes to sustainable improvement. Environ. Res. Lett. 16, 044061 (2021).

    Article 

    Google Scholar 

  • Venter, O. et al. International terrestrial human footprint maps for 1993 and 2009. Sci. Information 3, 160067 (2016).

    Article 

    Google Scholar 

  • Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction threat of terrestrial biodiversity. Nature 573, 582–585 (2019).

    Article 

    Google Scholar 

  • Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals will increase with the human footprint. Entrance. Ecol. Environ. 18, 13–18 (2020).

    Article 

    Google Scholar 

  • Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human strain in mountain ranges alter anticipated species responses to local weather change. Nat. Commun. 11, 1974 (2020).

    Article 
    CAS 

    Google Scholar 

  • Su, J., Yin, H. & Kong, F. Ecological networks in response to local weather change and the human footprint within the Yangtze River Delta city agglomeration, China. Landsc. Ecol. 36, 2095–2112 (2021).

    Article 

    Google Scholar 

  • Hansen, A. J. et al. A policy-driven framework for conserving one of the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).

    Article 

    Google Scholar 

  • Dos Santos, C. V. B., da Paixão Sevá, A., Werneck, G. L. & Struchiner, C. J. Does deforestation drive visceral leishmaniasis transmission? A causal evaluation. Proc. R. Soc. B 288, 20211537 (2021).

    Article 

    Google Scholar 

  • MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019).

    Article 
    CAS 

    Google Scholar 

  • Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an city endemic dengue space within the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).

    Article 

    Google Scholar 

  • Rodrigues, N. B. et al. Brazilian Aedes aegypti as a reliable vector for a number of complicated arboviral coinfections. J. Infect. Dis. 224, 101–108 (2021).

    Article 

    Google Scholar 

  • Weinstein, J. S., Leslie, T. F. & von Fricken, M. E. Spatial associations between land use and infectious illness: Zika virus in Colombia. Int. J. Environ. Res. Public Well being 17, E1127 (2020).

    Article 

    Google Scholar 

  • Heukelbach, J., Alencar, C. H., Kelvin, A. A., de Oliveira, W. Ok. & Pamplona de Góes Cavalcanti, L. Zika virus outbreak in Brazil. J. Infect. Dev. Countr. 10, 116–120 (2016).

    Article 

    Google Scholar 

  • Lowe, R. et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. Environ. Res. Public Well being 15, E96 (2018).

    Article 

    Google Scholar 

  • Alves, M. C. G. P., de Matos, M. R., de Lourdes Reichmann, M. & Dominguez, M. H. Estimation of the canine and cat inhabitants within the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005).

    Article 

    Google Scholar 

  • Mordecai, E. A. et al. Thermal biology of mosquito-borne illness. Ecol. Lett. 22, 1690–1708 (2019).

    Article 

    Google Scholar 

  • Gage, Ok. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Local weather and vectorborne ailments. Am. J. Prev. Med. 35, 436–450 (2008).

    Article 

    Google Scholar 

  • Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/

  • SIVEP – MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://200.214.130.44/sivep_malaria/

  • R Core Staff. R: A language and atmosphere for statistical computing (R Basis for Statistical Computing, 2020); https://www.R-project.org/

  • Sorichetta, A. et al. Excessive-resolution gridded inhabitants datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Information 2, 150045 (2015).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Model 4 of the CRU TS month-to-month high-resolution gridded multivariate local weather dataset. Sci. Information 7, 109 (2020).

    Article 

    Google Scholar 

  • Souza at. al. Reconstructing three many years of land use and land cowl adjustments in Brazilian biomes with Landsat archive and Earth Engine. Distant Sens. 12, https://doi.org/10.3390/rs12172735 (2020).

  • Fountain-Jones, N. M. et al. Find out how to make extra from publicity information? An built-in machine studying pipeline to foretell pathogen publicity. J. Anim. Ecol. 88, 1447–1461 (2019).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Study. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable choice utilizing random forests. Sample Recogn. Lett. 31, 2225–2236 (2010).

    Article 

    Google Scholar 

  • Wei, T. et al. Package deal ‘corrplot’. Statistician 56, e24 (2017).

    Google Scholar 

  • Ratner, B. The correlation coefficient: its values vary between +1/−1, or do they? J. Goal. Meas. Anal. Mark. 17, 139–142 (2009).

    Article 

    Google Scholar 

  • Ishwaran, H. & Kogalur, U. B. Quick unified random forests for survival, regression, and classification (RF-SRC) (2019).

  • O’Brien, R. & Ishwaran, H. A random forests quantile classifier for sophistication imbalanced information. Sample Recognit. 90, 232–249 (2019).

    Article 

    Google Scholar 

  • Silge, J. & Mahoney, M. spatialsample: spatial resampling infrastructure. R model 0.2.1 (2023).

  • Bhatt, S. et al. The worldwide distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article 
    CAS 

    Google Scholar 

  • Weaver, S. C. & Forrester, N. L. Chikungunya: evolutionary historical past and up to date epidemic unfold. Antivir. Res. 120, 32–39 (2015).

    Article 
    CAS 

    Google Scholar 

  • Puntasecca, C. J., King, C. H. & LaBeaud, A. D. Measuring the worldwide burden of chikungunya and Zika viruses: a scientific evaluation. PLoS Negl. Trop. Dis. 15, e0009055 (2021).

    Article 

    Google Scholar 

  • Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria underneath land-use change in frontier areas. Nat. Ecol. Evol. 1, 108 (2017).

    Article 

    Google Scholar 

  • de Araújo Pedrosa, F. & de Alencar Ximenes, R. A. Sociodemographic and environmental threat elements for American cutaneous leishmaniasis (ACL) within the State of Alagoas, Brazil. Am. J. Trop. Med. Hyg. 81, 195–201 (2009).

    Article 

    Google Scholar 

  • Gonçalves, N. V. et al. Cutaneous leishmaniasis: spatial distribution and environmental threat elements within the state of Pará, Brazilian Jap Amazon. J. Infect. Dev. Countr. 13, 939–944 (2019).

    Article 

    Google Scholar 

  • Leishmaniasis (Pan American Well being Group, 2022); https://www.paho.org/en/subjects/leishmaniasis

  • Harhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. City parasitology: visceral leishmaniasis in Brazil. Tendencies Parasitol. 27, 403–409 (2011).

    Article 

    Google Scholar 

  • Leave a Comment