Ellis, E. C. et al. Folks have formed most of terrestrial nature for at the very least 12,000 years. Proc. Natl. Acad. Sci. USA 118, e2023483118 (2021).
Google Scholar
Williams, B. A. et al. Change in terrestrial human footprint drives continued lack of intact ecosystems. One Earth 3, 371–382 (2020).
Google Scholar
Kuipers, Ok. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal variety internationally’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).
Google Scholar
Venter, O. et al. Sixteen years of change within the world terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Google Scholar
Watson, J. E. M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180 (2019).
Google Scholar
Foley, J. A. et al. International penalties of land use. Science 309, 570–574 (2005).
Google Scholar
Glidden, C. Ok. et al. Human-mediated impacts on biodiversity and the implications for zoonotic illness spillover. Curr. Biol. 31, R1342–R1361 (2021).
Google Scholar
Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).
Google Scholar
Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public well being, social and financial drawback within the twenty first century. Tendencies Microbiol. 10, 100–103 (2002).
Google Scholar
Hotez, P. J. Uncared for tropical ailments within the Anthropocene: the instances of Zika, Ebola, and different infections. PLoS Negl. Trop. Dis. 10, e0004648 (2016).
Google Scholar
Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of latest and re-emerging arboviral ailments. BMJ Glob. Well being 3, e000530 (2018).
Google Scholar
Rosenberg, R. et al. Important indicators: traits in reported vectorborne illness instances – United States and territories, 2004-2016. Morb. Mortal. Wk. Rep. 67, 496–501 (2018).
Google Scholar
World Malaria Report 2020: 20 Years of International Progress and Challenges (WHO, 2020); https://apps.who.int/iris/deal with/10665/337660
Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, individuals, illness vectors, and their animal hosts. Int. J. Well being Geogr. 9, 54 (2010).
Google Scholar
Shocket, M. S. et al. Transmission of West Nile and 5 different temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).
Google Scholar
Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and management of rising vector-borne zoonotic ailments. Lancet 380, 1946–1955 (2012).
Google Scholar
Franklinos, L. H. V., Jones, Ok. E., Redding, D. W. & Abubakar, I. The impact of world change on mosquito-borne illness. Lancet Infect. Dis. 19, e302–e312 (2019).
Google Scholar
Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning method to human footprint index estimation with purposes to sustainable improvement. Environ. Res. Lett. 16, 044061 (2021).
Google Scholar
Venter, O. et al. International terrestrial human footprint maps for 1993 and 2009. Sci. Information 3, 160067 (2016).
Google Scholar
Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction threat of terrestrial biodiversity. Nature 573, 582–585 (2019).
Google Scholar
Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals will increase with the human footprint. Entrance. Ecol. Environ. 18, 13–18 (2020).
Google Scholar
Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human strain in mountain ranges alter anticipated species responses to local weather change. Nat. Commun. 11, 1974 (2020).
Google Scholar
Su, J., Yin, H. & Kong, F. Ecological networks in response to local weather change and the human footprint within the Yangtze River Delta city agglomeration, China. Landsc. Ecol. 36, 2095–2112 (2021).
Google Scholar
Hansen, A. J. et al. A policy-driven framework for conserving one of the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).
Google Scholar
Dos Santos, C. V. B., da Paixão Sevá, A., Werneck, G. L. & Struchiner, C. J. Does deforestation drive visceral leishmaniasis transmission? A causal evaluation. Proc. R. Soc. B 288, 20211537 (2021).
Google Scholar
MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019).
Google Scholar
Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an city endemic dengue space within the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).
Google Scholar
Rodrigues, N. B. et al. Brazilian Aedes aegypti as a reliable vector for a number of complicated arboviral coinfections. J. Infect. Dis. 224, 101–108 (2021).
Google Scholar
Weinstein, J. S., Leslie, T. F. & von Fricken, M. E. Spatial associations between land use and infectious illness: Zika virus in Colombia. Int. J. Environ. Res. Public Well being 17, E1127 (2020).
Google Scholar
Heukelbach, J., Alencar, C. H., Kelvin, A. A., de Oliveira, W. Ok. & Pamplona de Góes Cavalcanti, L. Zika virus outbreak in Brazil. J. Infect. Dev. Countr. 10, 116–120 (2016).
Google Scholar
Lowe, R. et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. Environ. Res. Public Well being 15, E96 (2018).
Google Scholar
Alves, M. C. G. P., de Matos, M. R., de Lourdes Reichmann, M. & Dominguez, M. H. Estimation of the canine and cat inhabitants within the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005).
Google Scholar
Mordecai, E. A. et al. Thermal biology of mosquito-borne illness. Ecol. Lett. 22, 1690–1708 (2019).
Google Scholar
Gage, Ok. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Local weather and vectorborne ailments. Am. J. Prev. Med. 35, 436–450 (2008).
Google Scholar
Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/
SIVEP – MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://200.214.130.44/sivep_malaria/
R Core Staff. R: A language and atmosphere for statistical computing (R Basis for Statistical Computing, 2020); https://www.R-project.org/
Sorichetta, A. et al. Excessive-resolution gridded inhabitants datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Information 2, 150045 (2015).
Google Scholar
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Model 4 of the CRU TS month-to-month high-resolution gridded multivariate local weather dataset. Sci. Information 7, 109 (2020).
Google Scholar
Souza at. al. Reconstructing three many years of land use and land cowl adjustments in Brazilian biomes with Landsat archive and Earth Engine. Distant Sens. 12, https://doi.org/10.3390/rs12172735 (2020).
Fountain-Jones, N. M. et al. Find out how to make extra from publicity information? An built-in machine studying pipeline to foretell pathogen publicity. J. Anim. Ecol. 88, 1447–1461 (2019).
Google Scholar
Breiman, L. Random forests. Mach. Study. 45, 5–32 (2001).
Google Scholar
Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable choice utilizing random forests. Sample Recogn. Lett. 31, 2225–2236 (2010).
Google Scholar
Wei, T. et al. Package deal ‘corrplot’. Statistician 56, e24 (2017).
Ratner, B. The correlation coefficient: its values vary between +1/−1, or do they? J. Goal. Meas. Anal. Mark. 17, 139–142 (2009).
Google Scholar
Ishwaran, H. & Kogalur, U. B. Quick unified random forests for survival, regression, and classification (RF-SRC) (2019).
O’Brien, R. & Ishwaran, H. A random forests quantile classifier for sophistication imbalanced information. Sample Recognit. 90, 232–249 (2019).
Google Scholar
Silge, J. & Mahoney, M. spatialsample: spatial resampling infrastructure. R model 0.2.1 (2023).
Bhatt, S. et al. The worldwide distribution and burden of dengue. Nature 496, 504–507 (2013).
Google Scholar
Weaver, S. C. & Forrester, N. L. Chikungunya: evolutionary historical past and up to date epidemic unfold. Antivir. Res. 120, 32–39 (2015).
Google Scholar
Puntasecca, C. J., King, C. H. & LaBeaud, A. D. Measuring the worldwide burden of chikungunya and Zika viruses: a scientific evaluation. PLoS Negl. Trop. Dis. 15, e0009055 (2021).
Google Scholar
Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria underneath land-use change in frontier areas. Nat. Ecol. Evol. 1, 108 (2017).
Google Scholar
de Araújo Pedrosa, F. & de Alencar Ximenes, R. A. Sociodemographic and environmental threat elements for American cutaneous leishmaniasis (ACL) within the State of Alagoas, Brazil. Am. J. Trop. Med. Hyg. 81, 195–201 (2009).
Google Scholar
Gonçalves, N. V. et al. Cutaneous leishmaniasis: spatial distribution and environmental threat elements within the state of Pará, Brazilian Jap Amazon. J. Infect. Dev. Countr. 13, 939–944 (2019).
Google Scholar
Leishmaniasis (Pan American Well being Group, 2022); https://www.paho.org/en/subjects/leishmaniasis
Harhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. City parasitology: visceral leishmaniasis in Brazil. Tendencies Parasitol. 27, 403–409 (2011).
Google Scholar